HCEMM-SU Molecular Channelopathies Research Group


  1. Csanády L, Töröcsik, B. 2019. Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations. Elife 8. pii: e46450.
  2. Iordanov I, Tóth B, Szollosi A, Csanády L. 2019. Enzyme activity and selectivity filter stability of ancient TRPM2 channels were simultaneously lost in early vertebrates. Elife 8. pii: e44556.
  3. Csanády L, Vergani P, Gadsby DC. 2019. Structure, gating, and regulation of the CFTR anion channel. Physiol Rev. 99:707-738.
  4. Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L. 2018. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. Elife 7. pii: e36409.
  5. Sorum B, Töröcsik B, Csanády L. 2017. Asymmetry of movements in CFTR’s two ATP sites during pore opening serves their distinct functions. Elife 6. pii: e29013.
  6. Liu F, Zhang Z, Csanády L, Gadbsy DC, Chen J. 2017. Molecular structure of the human CFTR ion channel. Cell 169:85-95.
  7. Mihályi C, Torocsik B, Csanády L. 2016. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization. Elife 5. pii:e18164.
  8. Iordanov I, Mihályi C, Tóth B, Csanády L. 2016. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity. Elife 5. pii:e17600.
  9. Sorum, B., Czégé, D., Csanády, L. 2015. Timing of CFTR pore opening and structure of its transition state. Cell 163:724-33.
  10. Tóth, B., Iordanov, I., Csanády, L. 2015. Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct agonist ADP-ribose-2′-phosphate. J Gen Physiol. 145:419-430.
  11. Tóth, B., Iordanov, I., Csanády, L. 2014. Putative chanzyme activity of TRPM2 cation channel is unrelated to pore gating. Proc. Natl. Acad. Sci. USA. 111:16949-54.
  12. Csanády, L., Töröcsik B. 2014. Structure-activity analysis of a CFTR channel potentiator: distinct molecular parts underlie dual gating effects. J Gen Physiol. 144:321-336.
  13. Csanády, L., Töröcsik B. 2014. Catalyst-like modulation of transition states for CFTR channel opening and closing: New stimulation strategy exploits nonequilibrium gating. J Gen Physiol. 143:269-287.
  14. Csanády, L., Mihályi C, Szollosi A, Töröcsik B, Vergani P. 2013. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR. J Gen Physiol. 142:61-73.
  15. Vergani P, Gadsby D.C., Csanády, L. 2013. CFTR, an ion channel evolved from an ABC transporter. In:Roberts Gordon (editor); Heidelberg: Springer-Verlag, Encyclopedia of Biophysics 254-265.
  16. Tóth B, Csanády, L. 2012. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc Natl Acad Sci U S A. 109:13440-5.
  17. Szollosi, A. , Muallem, D.R., Csanády, L., Vergani, P. 2011. Mutant cycles at CFTR’s non-canonical ATP-binding site support little interface separation during gating. J. Gen. Physiol. 137:549-62.
  18. Csanády, L., Vergani, P., Gulyás-Kovács, A., Gadsby, D.C. 2011. Electrophysiological, biochemical, and bioinformatic methods for studying CFTR channel gating and its regulation. Methods Mol Biol. 741:443-69.
  19. Csanády, L., Vergani, P., Gadsby, D.C. 2010. Strict coupling between CFTR’s catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Proc. Natl. Acad. Sci. USA. 107:1241-1246.
  20. Tóth B., Csanády, L. 2010. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J. Biol. Chem. 285:30091-102.
  21. Szollosi A., Vergani P., Csanády, L. 2010. Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2. J. Gen. Physiol. 136:407-23.
  22. Csanády, L. 2009. Application of rate-equilibrium free energy relationship analysis to nonequilibrium ion channel gating mechanisms. J. Gen. Physiol. 134:129-136.
  23. Csanády, L., Törőcsik, B. 2009. Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J. Gen. Physiol. 133:189-203.
  24. Csanády, L., A.C. Nairn, Gadsby, D.C. 2006. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. J. Gen. Physiol. 128:523-533.
  25. Gadsby, D.C., Vergani, P., Csanády, L. 2006. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477-483.
  26. Csanády, L. 2006. Statistical evaluation of ion-channel gating models based on distributions of LogLikelihood Ratios. Biophys. J. 90:3523-3545.
  27. Csanády, L., Seto-Young, D., Chan, K.W., Cenciarelli, C., Angel, B.B., Qin, J., McLachlin, D.T., Krutchinsky, A.N., Chait, B.T., Nairn, A.C., Gadsby, D.C. 2005. Preferential phosphorylation of R-domain serine 768 dampens activation of CFTR channels by PKA. J. Gen. Physiol. 125:171-186.
  28. Csanády, L., Chan, K.W., Nairn, A.C., Gadsby, D.C. 2005. Functional roles of nonconserved structural segments in CFTR’s NH2-terminal Nucleotide Binding Domain. J. Gen. Physiol. 125:43-55.
  29. Csanády, L., Adam-Vizi, V. 2004. Antagonistic regulation of native Ca2+– and ATP-sensitive cation channels in brain capillaries by nucleotides and decavanadate. J. Gen. Physiol. 123:743-757.
  30. Csanády, L., Adam-Vizi, V. 2003. Ca2+– and voltage-dependent gating of Ca2+– and ATP-sensitive cationic channels in brain capillary endothelium. Biophys. J. 85:313-327.
  31. Csanády, L. 2000. Rapid kinetic analysis of multichannel records by a simultaneous fit to all dwell-time histograms. Biophys. J. 78:785-799.
This website uses cookies. For more information visit the Cookies & Privacy Policy page.